Lesson 2.1 – Comparing and Ordering Rational Numbers (pt. 1)

Outcome:

- Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers.

Rational numbers? What are those?!

Definition:

Below is a diagram of the different number systems. Fill it in and add three examples of each type of number in the appropriate circle.

What is the difference between \mathbb{N} and W?

What is the same between $\mathbb Z$ and $\mathbb Q?$

<u>Classifying examples</u>: which of the above system or systems do these numbers belong?

a) 17

b) -3

c) 0.75

e)
$$\frac{1}{\sqrt{3}}$$

Bonus: can a number belong to a bigger circle/number system, but not a smaller one?

Converting Fractions to Decimals

What does the fraction sign mean?

Fraction	Calculation	Decimal
$\frac{5}{8}$		
7 15		
$\frac{18}{7}$		
$3\frac{7}{10}$		

Converting Decimals to Fractions

For terminating decimals, say them using place value, then translate to a fraction.

Decimal	In Words	Fraction
0.74		
5.7		
0.185		

For <u>repeating decimals</u>, the denominator will always be 9, 99, 999, ... To determine how many 9's you need, look at the place value of when the decimal starts to repeat.

Decimal	Fraction
0.777	
0.545454	
3.5	

 Ordering Decimals

 Ascending: Put the numbers in order from ______ to ______.

 Descending: Put the numbers in order from ______ to ______.

Put the following numbers in ascending order: $0.3, 3.3, 0.\overline{3}, -0.03, -3, 0.003$

Put the following numbers in descending order: $27 ext{ 1 } 1 ext{ 2 } 3$

 $1\frac{2}{5}, \frac{7}{6}, \frac{1}{2}, \frac{3}{4}$

Comparing Numbers

What do each of the following signs mean? < > \leq \geq Compare the following numbers using the above signs: d) $-\frac{3}{4}$ **a)** 0.35 $-\frac{3}{7}$ 0.05 $\frac{5}{4}$ **b)** -14.2 - 13.9 **e)** 1.5 c) $\frac{1}{3}$ $\frac{1}{2}$ f) $\frac{11}{12}$ 0.2

ASSIGNMENT: pg. 51-53 #4-9, 18-23

Lesson 2.1 - Comparing and Ordering Rational Numbers (pt. 2)

Outcome:

- Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers.

Review of Fractions

What is a fraction?

- Proper Fractions

- Improper and mixed fractions

Equivalent Fractions

Definition:

Write an equivalent fraction for the following:

a) 2 ³/₄

b) $\frac{7}{2}$

Give 5 examples of equivalent fractions for the following:

a) $\frac{1}{5}$

b)
$$\frac{6}{10}$$

c) $\frac{5}{3}$

d) $1\frac{1}{4}$

Fraction	Lowest Terms/Simplest Form/Reduced
50	
100	
$1\frac{13}{26}$	
24	
36	

Provide a rational number (\mathbb{Q}) between the following numbers in both fraction and decimal form.

a) 3.4 3.5

b) -0.003 - 0.004

c)
$$\frac{2}{5}$$
 $\frac{3}{5}$

ASSIGNMENT: pg. 51-53 #10-16, 25, 27, 30

Lesson 2.2 - Problem Solving with Decimals

Outcome:

- Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers.
- Explain and apply the order of operations, including exponents, with and without technology.

Operations with Integers

Being able to perform simple operations with integers can help with estimation. Note that there is more than one way to think about these operations!!

Examples: a) (-5) + 6b) (-3) - 4c) (2)(-4)d) (-3)(5)e) (-2)(-3)

Order of Operations

Examples $6^2-6(2)^2$	В
$12-(9-5)^2\div 2$	E
	D
	Μ
	A
	S

-5.23 + 2.1[1.9 + (-2.8)]

Word Problems

A hot air balloon climbed at 0.8 m/s for 10s. It then descended at 0.6m/s for 6s. a) What was the overall change in altitude?

b) What was the average rate of change in altitude?

Melanie for the following marks on math exams: 75%, 92%, 38%, and 62%. What is her overall average?

ASSIGNMENT: pg. 59-62 #1-11, 13, 14, 16-20, 22-24

Lesson 2.3 - Problem Solving with Fractions (pt. 1)

Outcome:

- Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers.

Definitions

Numerator:

Denominator:

Improper fraction:

Proper fraction:

Mixed fraction:

1) How do you go from an improper fraction to a mixed fraction? Explain.

$$Ex. \frac{25}{4}$$

2) How do you go from a mixed fraction to an improper fraction? Explain.

Ex. $3\frac{2}{3}$

Like Fractions:

Adding and Subtracting Fractions

To add and subtract fractions, you need to find a common ______. The fractions need to be LIKE FRACTIONS!!

If you are struggling to find a common denominator, just multiply the two denominators to get a common one :)

Solve: a) $\frac{1}{5} + \frac{1}{5}$	e) $3\frac{2}{3} + \left(-1\frac{3}{4}\right)$
b) $\frac{1}{10} + \frac{7}{10}$	f) $-\frac{2}{5}-\frac{3}{4}$
c) $\frac{3}{7} - \frac{1}{2}$	g) $2\frac{5}{6} + 3\frac{1}{5}$
d) $\frac{2}{5} - \left(-\frac{1}{10}\right)$	h) $-2\frac{1}{2}+1\frac{7}{8}$

ASSIGNMENT: pg. 67-68 #1, 5, 6

Lesson 2.3 - Problem Solving with Fractions (pt. 2)

Outcome:

- Demonstrate an understanding of rational numbers by: comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers.

Multiplying Fractions

How to: multiply the _____ and the _____ and simplify!!

Solve:

$a)^{\frac{4}{5}} \times -\frac{3}{5}$	_ (ام	$-\frac{3}{\sqrt{2}}$	-2
$a_{1}\frac{1}{5} - \frac{1}{4}$	u) -	$-\frac{1}{4}$	3

b)
$$\frac{-1}{5} \left(\frac{-5}{6} \right)$$
 e) $-2\frac{2}{3} \times 2\frac{1}{6}$

c)
$$2\frac{1}{2} \times \frac{1}{3}$$
 f) $\frac{7}{8} \times 3$

Dividing Fractions

To divide fractions, we multiply by the _____.

Basically, you ______ the first fraction, ______ the division sign, and

_____ the second fraction. Then multiply as per usual!!

Solve:

$a)\frac{5}{2}$	<u> </u>	2	$d) - 2 \frac{1}{2} \div 2$	1 1
⁶ 6	•	3	10^{10}	3

b)
$$\frac{9}{-16} \div \frac{-1}{3}$$
 e) $\frac{1}{3} \div \frac{3}{9}$

c)
$$-1\frac{1}{2} \div -2\frac{3}{4}$$
 f) $\frac{1}{4} \div 5$

Word Problem

At the start of the week, Mackenzie had \$30 of her monthly allowance left. That week, she spends $\frac{1}{5}$ of the money on bus fares, another $\frac{1}{2}$ on shopping, and $\frac{1}{4}$ on snacks. How much did she have left at the end of the week?

ASSIGNMENT: pg. 67-70 #2, 4, 7-10, 13, 14, 16-21, 24, 26

Lesson 2.4 – Determining Square Roots of Rational Numbers

Outcome:

- Determine the square root of positive rational numbers that are perfect squares.
- Determine an approximate square root of positive rational numbers that are nonperfect squares.

Opposites:

Square root:

Example:

Recall: when you multiply two positive or two negative numbers together, the product will be a positive number.

Examples:

- The square root of a positive number is both a POSITIVE and a NEGATIVE number.
- We CANNOT take the square root of a negative number!!

Perfect Squares

A <u>perfect square</u> is a number that is a product of two identical factors. These are the numbers you get when you multiply two of the exact same number. The numbers must be <u>integers</u> or <u>rational numbers</u>.

Square	-0.5	-0.6	-0.7	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
Root	or	or	or	or	or	or	or	or	or	or	or	or	or	or	or
	0.5	0.6	0.7	1	2	3	4	5	6	7	8	9	10	11	12
Perfect	0.25	0.36	0.49	1	4	9	16	25	36	49	64	81	100	121	144
Square	▼														

<u>Examples</u> : Determine v	$\frac{\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}}{\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{\frac{1}{4}}} = \frac{1}{2}}$	ollowing numbers are perfect squares.
a) 64	$\sqrt{4}$ $\sqrt{4}$ $\sqrt{4}$ 2	
b) 61		
c) $\frac{36}{49}$		
d) 0.3		

Word Problem (Determine a rational number from its square root) A square trampoline has a side length of 2.6 m. Estimate and calculate the area of the trampoline.

Estimate:

Calculate:

Examples: Estimate, then calculate.

a) √1.69

b) $\sqrt{0.72}$

c) $\sqrt{0.33}$

<u>Example</u>

Determine the side length of a square whose area is 81 cm^2 .

ASSIGNMENT: pg. 78-79 #5-21, 24, 29, 31